
Welcome!
CS 223: Systems Programming

Instructor: Aline Normoyle

 TA: Rebecca Lassman

 Textbook: Dive into Systems

 Slack: Announcements, links, etc

 Website: Policies, syllabus, etc

 Github: Code repository

 Lab: Park 231

Course Resources

2

Webpage

https://brynmawr-cs223-s26.github.io/website/

Github

https://github.com/BrynMawr-CS223-S26/

Slack

https://BrynMawr-CS223-S26.slack.com

Agenda

What is a computer system?

Development environment overview

C and Java

Makefiles

Unix review: bash and working with paths

Editors

Administrivia

3

Computer
System

What is a computer system?

Hardware & Special Systems Software (OS)

Work together to run application programs

– HW executes program instructions

– OS implements interface to user/program
and manages the computer HW

Operating System (OS)

Computer Hardware

CPU RAM Disk

Program

4
Slides by Tia Newhall, CS31, Swarthmore

What is systems programming?

• Programs that interact with hardware
– drivers, hardware management, embedded systems

• Programming of tools intended for use by other
programmers or software
– Compilers, operating systems, game engines, inter-process

communication

• Typically performance or memory critical
– Small optimizations have large payoff
– Software runs in resource constrained environment

5

What you will learn

• C programming fundamentals
• Memory management
• Debugging Tools
• Data representations under-the-hood
• Neuman architecture, Assembly
• Core operating systems concepts
• Concurrent Programming

– Processes
– Threads

• Performance do’s and dont’s
• Working with UNIX, git, and terminal editors

6

Understanding binary representations
and machine code

We will learn

• How to directly access and modify memory

• How data is stored in memory

• What low-level machine instructions look like
and how to read it (x86_64 assembly
language)

7

How hardware affects performance
The overhead associated with running programs
 Q: why does my program run slowly?

 A1: picked a bad algorithm (big O analysis)

 A2: picked best algorithm, but program
 using system resources in inefficient way

Example: How a program uses memory can have huge effect
 on its performance

 (ex) merge sort is O(nlogn) but it is not in-place:
 each merge pass requires moving elements from
 one list to another (requires 2n memory space)

 (ex) program’s access patterns and the Memory Hierarchy

8
Slides based on Tia Newhall, CS31, Swarthmore

Why study systems?

9

To understand the systems that form the basis of all
modern computing

To become better software engineers and programmers
- write more efficient code
- understand the limitations of computing in terms
of security, performance, energy, etc

Skills to design, build, and customize your own software
and devices

Let’s Get Started!

10

Development Environment

A development environment consists of the platform and tools that
you use to write software

Systems programmers need to be able to
– work from terminal using shell commands
– program in low-level languages
– use debugging and profiling tools

This class:
– Operating system: Ubuntu (Linux)
– Programming languages: C, x86_64 assembly language
– Editor: nano, vim, or emacs
– Makefiles for compiling and linking
– git for source control

11

C

C

• High-level programming language
– Java, python, ruby, Javascript, C++, etc

– Imperative (sequence of statements)

– Procedural (structured using functions)

– No classes, built-in types such as strings, lists

• Less abstracted than other languages
– easier to see relationship between code and the

computer’s running of it

– capable of more efficient code

12

From Java to C: Hello World

class Hello {
 public static void main(String[] args) {
 System.out.println(“Hello World”);
 }
}

#include <stdio.h>

int main(int argc, char** argv) {
printf("Hello World!\n“);

 return 0;
}

To compile: javac hello.java
To run: java Hello

To compile: gcc hello.c
To run: ./a.out

1. Compiling a C program translates it to binary (0’s and 1’s)

• The binary file is an executable, meaning “we can run it”

Building and Running a C program

// example C program

int main() {

 int x = 6 + 7;

 printf(“x %d”, x);

 return 0;

}

01010110101
01010101010
10101010101
01010100

C program: binary executable program:

gcc
compiler

14

Operating System (OS)

Computer Hardware
(HW)

2. With OS’s help, HW circuits
 runs binary executable

Slides by Tia Newhall, CS31, Swarthmore

1. Compiling (javac) a Java program translate it to Java byte code
2. Running (java) translates the program to binary (0’s and 1’s)

• The program that translate from byte code to machine code is called the
Java Virtual Machine (JVM)

Building and Running a Java program

// example Java program

class Hello {
 public static void main(String[] args) {
 int x = 6 + 7;
 System.out.println(“Hello World”);
 }
}

01010110101
01010101010

binary
executable
commands

javac
compiler

15

Operating System (OS)

Computer Hardware
(HW)

3. With OS’s help, HW circuits
 runs binary executable

Slide based on those by Tia Newhall, CS31, Swarthmore

ifne 25
goto 38
iinc 2, 1
…

java virtual machine

Java byte code
*.class

All programs must eventually
become binary (0’s and 1’s) to run
on a computer

• The binary code is specific to the hardware

• Higher-level languages (e.g. Java) have more layers of
abstraction between the programmer’s code and the
binary code

– higher-level languages are cross-platform, e.g. the same
program can run on different hardware

• ex. Our C and Java programs run on mac, windows, and linux

16

Makefiles

Idea: Put all build commands into a file

17

$ nano Makefile
$ make hello

CC=gcc
% :: %.c
 $(CC) -g -Wall -Wvla -Werror -Wno-unused-variable $< -o $@

all: hello

clean :
 rm hello

Review: UNIX basics

Ubuntu Desktop has a window manager (lab machines) but we will
mostly be using command-line interfaces (CLI)

terminal – text-based interface for the OS

command line – current line in the terminal; where we issue a
command

command prompt – prefix text at the beginning of the command line

shell – program that executes commands from terminal
– bash – the shell we will use in this class!
– zsh – mac shell
– powershell – windows shell

18

Exercise: Connect to a server

On a laptop or home desktop computer, open a
terminal and ssh to comet

19

$ ssh <username>@comet.cs.brynmawr.edu

Exercise: Edit a file

Write and compile a program, `hello.c`, that
prints “Hello World”

20

$ nano hello.c

$ gcc hello.c
$./a.out

$ gcc hello.c –o hello
$./hello

Reference: Some useful commands

• ls – list all directories

• cd, mkdir, mv, cp, rm – change directory, make directory, move, copy, remove

• cat, less, more – showing files

• javac, gcc, make – compiling programs

• vi, nano, emacs – editing files

• grep, find – searching files

• man – read documentation (RTFM: “Read the fine manual”)

• ssh <username>@goldengate.cs.brynmawr.edu – log into CS server

• git – source control

21

Working with paths from terminal

• What are files? What are directories?

• path - full name of a file or directory that indicates the file/directory location

within the file system

– Absolute paths: path from the root of the file system to the file

– Relative paths: path from current working directory to the file

• File extension: Tells the OS what type of data is in the file (ex: *.txt,
*.jpg, etc)

22

Special directories

.. ← the parent directory (two dots)

. ← the current directory (one dot)

/ ← the root directory

/home/<username> ← your home directory

~ ← your home directory

Exercise

What is the absolute path of hello.txt?

What is the absolute path of hello.txt from the A
directory?

What is the relative path of `hello.txt` from
- the root directory?
- the A directory?
- the B directory?

root
-- A
---- hello.txt
-- B

Exercise: Draw the directory hierarchy
after the following commands
$ pwd
/home/alinen
$ mkdir A
$ cd A
$ mkdir Z
$ touch talk.c
$ cd ..
$ touch listen.c
$ cd
$ touch sing.c

Your editor and you!

You must learn a terminal editor this semester

● Nano
● Emacs
● Vim

Learning a good editor will help you write code faster

You will need to use one of these editors for coding
activities in lab

Nano

27

Emacs

28

NOTE: F10 to use the menu

Vim

● To open: `vi <filename>`

● To quit: Press escape, then `:q!`

● To save: Press escape, then `:w`

● Two modes: insert and command mode

○ insert mode: type text in the usual way: ‘i’ enters insert
mode at current cursor position

○ Escape enters command mode: search, navigate,
copy/paste/delete, etc

29

ADMINISTRIVIA

30

Lecture/Lab Format

• Lectures
– Slides with integrated activities

– Will share recordings after class

– Quizzes (30 minutes, closed book, 1 cheat sheet)

• Labs
– Coding Practice

– Worksheets (in teams)

• Assignments
– Weekly (due on Fridays)

31

Policies

• Accommodations

– Need at least 2 weeks prior notice for extensions
on quizzes/exams

• Covid policy: mask friendly

• Late policy: up to 1 day late

32

Programming Assignments

• Submissions MUST compile using make on our UNIX systems
– Test on our servers to check your work
– Do not change basecode!

• Full credit submissions must also

– Follow the class coding style: especially consistent indentation
• You may need to configure your editor to ensure this works correctly and we

will help you with that!

– not have memory errors (leaks, corruption)
• Run using valgrind to test

• Assignment 01 has more information

33

How to succeed
• Read the textbook!

• Do the work each week
– Approx 10 hour week commitment (4.5 hrs + 5 hrs)

• Attend lectures and labs
– Lecture attendance is not mandatory
– But better grades are correlated with attendance
– Take hand-written notes

• Asking questions
– Labs/Lectures/Office Hours are the best time
– Reach out to me and TAs on Slack
– Slack is great for questions. Responses within 24 hrs, Mon-Fri
– Asking questions is a good way to network

34

Strategies

• Building focus
– Work in silence on a specific task for a short period

• Pomodoro Method

– Turn off phone notifications, ring tones
– Close browsers, mail, etc

• Building understanding
– Alternate short focused periods of study with rest

• Building problem solving skills
– Use assignments and quizzes as practice
– Fix and understand errors
– Start early

35

Strategies: Building programming skills

You’re effectively using assignments to learn if you can:

• Explain how your code works to someone else, without looking at your code
• Explain the system calls necessary to complete your assignment without

looking them up online
• Write a similar program within a few minutes, without looking up help online

What worked for me:

• Writing my own programs from scratch
• Checking my work by stepping line by line using a debugger (gdb)
• When stuck, debugging the program with the help of a more experienced

developer
• Comparing my solutions with others after I finished my own solution

36

Lab this week

Checking your UNIX account

Signing into slack

Setting up SSH and Github

Pulling and pushing to your code repository for
this course

37

	Slide 1: Welcome! CS 223: Systems Programming
	Slide 2: Course Resources
	Slide 3: Agenda
	Slide 4: What is a computer system?
	Slide 5: What is systems programming?
	Slide 6: What you will learn
	Slide 7: Understanding binary representations and machine code
	Slide 8: How hardware affects performance
	Slide 9: Why study systems?
	Slide 10: Let’s Get Started!
	Slide 11: Development Environment
	Slide 12: C
	Slide 13: From Java to C: Hello World
	Slide 14: Building and Running a C program
	Slide 15: Building and Running a Java program
	Slide 16: All programs must eventually become binary (0’s and 1’s) to run on a computer
	Slide 17: Makefiles
	Slide 18: Review: UNIX basics
	Slide 19: Exercise: Connect to a server
	Slide 20: Exercise: Edit a file
	Slide 21: Reference: Some useful commands
	Slide 22: Working with paths from terminal
	Slide 23: Special directories
	Slide 24: Exercise
	Slide 25: Exercise: Draw the directory hierarchy after the following commands
	Slide 26: Your editor and you!
	Slide 27: Nano
	Slide 28: Emacs
	Slide 29: Vim
	Slide 30: Administrivia
	Slide 31: Lecture/Lab Format
	Slide 32: Policies
	Slide 33: Programming Assignments
	Slide 34: How to succeed
	Slide 35: Strategies
	Slide 36: Strategies: Building programming skills
	Slide 37: Lab this week

