Welcome!
CS 223: Systems Programming

Instructor: Aline Normoyle DIVE INTO 9

TA: Rebecca Lassman SYSTEMS

Textbook: Dive into Systems A Gentle Introduction to Computer Systems
Slack: Announcements, links, etc mxewncwes
Website: Policies, syllabus, etc
Github: Code repository

Lab: Park 231

Course Resources

Webpage

https://brynmawr-cs223-s26.github.io/website/

Github

https://github.com/BrynMawr-CS223-526/

Slack

https://BrynMawr-CS223-S26.slack.com

Agenda

What is a computer system?
Development environment overview

C and Java

Makefiles

Unix review: bash and working with paths
Editors

Administrivia

What is a computer system?

Hardware & Special Systems Software (OS)
Work together to run application programs

— HW executes program instructions

— OS implements interface to user/program
and manages the computer HW

Program

Operating System (OS) O’ é e

ystem Computer Hardware
“ CPU RAM Disk I

Slides by Tia Newhall, CS31, Swarthmore

What is systems programming?

* Programs that interact with hardware
— drivers, hardware management, embedded systems

* Programming of tools intended for use by other
programmers or software

— Compilers, operating systems, game engines, inter-process
communication

e Typically performance or memory critical
— Small optimizations have large payoff
— Software runs in resource constrained environment

What you will learn

e Cprogramming fundamentals

e Memory management

* Debugging Tools

e Data representations under-the-hood
* Neuman architecture, Assembly

* Core operating systems concepts

e Concurrent Programming

— Processes
— Threads

 Performance do’s and dont’s
 Working with UNIX, git, and terminal editors

Understanding binary representations
and machine code

We will learn
* How to directly access and modify memory

* How data is stored in memory

e What low-level machine instructions look like
and how to read it (x86_64 assembly
language)

How hardware affects performance

The overhead associated with running programs
Q: why does my program run slowly?
Al: picked a bad algorithm (big O analysis)

A2: picked best algorithm, but program
using system resources in inefficient way

Example: How a program uses memory can have huge effect
on its performance
(ex) merge sort is O(nlogn) but it is not in-place:
each merge pass requires moving elements from
one list to another (requires 2n memory space)

(ex) program’s access patterns and the Memory Hierarchy

8
Slides based on Tia Newhall, CS31, Swarthmore

Why study systems?

To understand the systems that form the basis of all
modern computing

To become better software engineers and programmers
- write more efficient code
- understand the limitations of computing in terms
of security, performance, energy, etc

Skills to design, build, and customize your own software
and devices

2 N R RS AT T fta.. wf.

s P A P \....\\r.\\ vy e N

S W = = e 5 ; R Y ~
ae .l&&lg K&lﬁgt&‘tuﬁvt RS R = O T B o B TN g

T

ot —— - =
e et £ i oy S e = ﬂn.-w‘dl s
S e AT e lh Bb\t- Er PN = -

,‘1\Mpwcmh\.hu.t B e S 3

Sat= %Iﬂ“ﬂl — 5 10-..-..\..

.\k.laolfb# ¥ YﬁJJan1 e
. s

Development Environment

A development environment consists of the platform and tools that
you use to write software

Systems programmers need to be able to
— work from terminal using shell commands
— program in low-level languages
— use debugging and profiling tools

This class:
— Operating system: Ubuntu (Linux)
— Programming languages: C, x86_64 assembly language
— Editor: nano, vim, or emacs
— Makefiles for compiling and linking
— git for source control

11

C

* High-level programming language
— Java, python, ruby, Javascript, C++, etc
— Imperative (sequence of statements)
— Procedural (structured using functions)
— No classes, built-in types such as strings, lists

* Less abstracted than other languages

— easier to see relationship between code and the
computer’s running of it

— capable of more efficient code

From Java to C: Hello World

i <stdio.h>
class Hello { #include <stdio.h

public static void main(String[] args) {
System.out.printin(“Hello World”);

}
}

int main(int argc, char** argv) {
printf("Hello World!\n“);
return O;

}

To compile: gcc hello.c

To compile: javac hello.java
To run: ./a.out

To run: java Hello

Building and Running a C program

1. Compiling a C program translates it to binary (0O’'s and 1’s)

The binary file is an executable, meaning “we can run it”

C program: binary executable program:

// example C program

int main () { 01010110101
int x = 6 + 7; gcgl 01010101010
printf (“x %47, x); comprer 10101010101
return 0; 01010100

} 7 -y

2. With OS’s help, HW circuits :
runs binary executable Operating System (OS)
Computer Hardware
(HW)

Slides by Tia Newhall, CS31, Swarthmore

Building and Running a Java program

1. Compiling (javac) a Java program translate it to Java byte code

2. Running (java) translates the program to binary (0’s and 1’s)
The program that translate from byte code to machine code is called the

Java Virtual Machine (JVM)

// example Java program
class Hello {
public static void main(String[] args) {
intx=6+7;
System.out.printin(“Hello World”);

}

} 4

—

javac
compiler

ffne 25 Java byte code

)| 80t 38
iinc2, 1 *.class

3. With OS’s help, HW circuits
runs binary executable

Slide based on those by Tia Newhall, CS31, Swarthmore

=
java virtual machine

!

binary
01010110101
executable

01010101010

commands @

Operating System (OS)

Computer Hardware
(HW)

All programs must eventually
become binary (0’s and 1’s) to run

on a computer

 The binary code is specific to the hardware

* Higher-level languages (e.g. Java) have more layers of
abstraction between the programmer’s code and the

binary code

— higher-level languages are cross-platform, e.g. the same
program can run on different hardware

e ex. Our Cand Java programs run on mac, windows, and linux

Makefiles

|dea: Put all build commands into a file

S nano Makefile
S make hello

CC=gcc
% :: %.C
S(CC) -g -Wall -Wvla -Werror -Wno-unused-variable S< -0 S@

all: hello

clean :
rm hello

Review: UNIX basics

Ubuntu Desktop has a window manager (lab machines) but we will
mostly be using command-line interfaces (CLI)

terminal — text-based interface for the OS

command line — current line in the terminal; where we issue a
command

command prompt — prefix text at the beginning of the command line

shell — program that executes commands from terminal
— bash — the shell we will use in this class!
— zsh —mac shell
— powershell — windows shell

Exercise: Connect to a server

On a laptop or home desktop computer, open a
terminal and ssh to comet

S ssh <username>@comet.cs.brynmawr.edu

Exercise: Edit a file

Write and compile a program, hello.c’, that
prints “Hello World”

S nano hello.c

S gcc hello.c
S ./a.out

S gcc hello.c —o hello
S ./hello

Reference: Some useful commands

e Is—list all directories

e cd, mkdir, mv, cp, rm — change directory, make directory, move, copy, remove
e cat, less, more — showing files

* javac, gcc, make — compiling programs

* Vi, nano, emacs — editing files

e grep, find — searching files

* man —read documentation (RTFM: “Read the fine manual”)

e ssh <username>@goldengate.cs.brynmawr.edu — log into CS server

e git—source control

Working with paths from terminal

What are files? What are directories?

path - full name of a file or directory that indicates the file/directory location
within the file system

— Absolute paths: path from the root of the file system to the file

— Relative paths: path from current working directory to the file

File extension: Tells the OS what type of data is in the file (ex: *.txt,
*.ipg, etc)

22

Special directories

.. «— the parent directory (two dots)

. «— the current directory (one dot)

| < the root directory

/home/<username> « your home directory

~ «— your home directory

root

Exercise A

---- hello.txt
--B

What is the absolute path of hello.txt?

What is the absolute path of hello.txt from the A
directory?

What is the relative path of hello.txt” from
- the root directory?

- the A directory?

- the B directory?

Exercise: Draw the directory hierarchy
after the following commands

S pwd
/home/alinen

S mkdir A
Scd A

S mkdir Z

S touch talk.c

>cd .
S touch listen.c

S cd
S touch sing.c

Your editor and you!

You must learn a terminal editor this semester

« Nano
« EmMacs
e Vim

Learning a good editor will help you write code faster

You will need to use one of these editors for coding
activities in lab

2 alinen@comet: ~

GNU nano 7.2 New Buffer =*
Hello Nano

Write Out @1 Where Is)i Cut 4l Execute)le Location
Read File @\ Replace MY Paste @y Justify Wi Go To Line

File Edit Options Buffers Tools Help
Welcome to GNU Emacs, one component of the GNU/Linux operating system.

Get help C-h (Hold down CTRL and press h)

Undo changes
Exit Emacs

(¢C-? means use the CTRL key. ‘M-’ means use the Meta (or Alt) key.
If you have no Meta key, you may instead type ESC followed by the character.)
Useful tasks:

GNU Emacs 29.3 (build 1, x86_6U4-pc—Llinux—gnu, GTK+ Version 3.24.41,
cairo version 1.18.0) of 2024-04-01, modified by Debian
Copyright (C) 2024 Free Software Foundation, Inc.

GNU Emacs comes with ABSOLUTELY NO WARRANTY; type for .
Emacs is Free Software——Free as in Freedom--so you can redistribute copies
of Emacs and modify it; type to see

Type for information on

NOTE: F10 to use the menu

Vim

e To open: 'vi <filename>’

o To quit: Press escape, then :q!
o To save: Press escape, then :w

e TWwo modes: insert and command mode

o insert mode: type text in the usual way: ‘i’ enters insert
mode at current cursor position

o Escape enters command mode: search, navigate,
copy/paste/delete, etc

29

ADMINISTRIVIA

Lecture/Lab Format

* Lectures
— Slides with integrated activities
— Will share recordings after class
— Quizzes (30 minutes, closed book, 1 cheat sheet)

e Labs

— Coding Practice
— Worksheets (in teams)

* Assignments
— Weekly (due on Fridays)

Policies

e Accommodations

— Need at least 2 weeks prior notice for extensions
on quizzes/exams

e Covid policy: mask friendly

* Late policy: up to 1 day late

Programming Assignments

* Submissions MUST compile using make on our UNIX systems
— Test on our servers to check your work
— Do not change basecode!

 Full credit submissions must also

— Follow the class coding style: especially consistent indentation

* You may need to configure your editor to ensure this works correctly and we
will help you with that!

— not have memory errors (leaks, corruption)
* Run using valgrind to test

* Assignment 01 has more information

How to succeed
e Read the textbook!

* Do the work each week
— Approx 10 hour week commitment (4.5 hrs + 5 hrs)

e Attend lectures and labs
— Lecture attendance is not mandatory
— But better grades are correlated with attendance
— Take hand-written notes

* Asking questions
— Labs/Lectures/Office Hours are the best time
— Reach out to me and TAs on Slack
— Slack is great for questions. Responses within 24 hrs, Mon-Fri
— Asking questions is a good way to network

Strategies

e Building focus

— Work in silence on a specific task for a short period
 Pomodoro Method

— Turn off phone notifications, ring tones
— Close browsers, mail, etc

e Building understanding
— Alternate short focused periods of study with rest

* Building problem solving skills
— Use assignments and quizzes as practice
— Fix and understand errors
— Start early

Strategies: Building programming skills

You're effectively using assignments to learn if you can:

* Explain how your code works to someone else, without looking at your code

e Explain the system calls necessary to complete your assignment without
looking them up online

* Write a similar program within a few minutes, without looking up help online
What worked for me:

* Writing my own programs from scratch
* Checking my work by stepping line by line using a debugger (gdb)

* When stuck, debugging the program with the help of a more experienced
developer

* Comparing my solutions with others after | finished my own solution

Lab this week

Checking your UNIX account
Signing into slack
Setting up SSH and Github

Pulling and pushing to your code repository for
this course

	Slide 1: Welcome! CS 223: Systems Programming
	Slide 2: Course Resources
	Slide 3: Agenda
	Slide 4: What is a computer system?
	Slide 5: What is systems programming?
	Slide 6: What you will learn
	Slide 7: Understanding binary representations and machine code
	Slide 8: How hardware affects performance
	Slide 9: Why study systems?
	Slide 10: Let’s Get Started!
	Slide 11: Development Environment
	Slide 12: C
	Slide 13: From Java to C: Hello World
	Slide 14: Building and Running a C program
	Slide 15: Building and Running a Java program
	Slide 16: All programs must eventually become binary (0’s and 1’s) to run on a computer
	Slide 17: Makefiles
	Slide 18: Review: UNIX basics
	Slide 19: Exercise: Connect to a server
	Slide 20: Exercise: Edit a file
	Slide 21: Reference: Some useful commands
	Slide 22: Working with paths from terminal
	Slide 23: Special directories
	Slide 24: Exercise
	Slide 25: Exercise: Draw the directory hierarchy after the following commands
	Slide 26: Your editor and you!
	Slide 27: Nano
	Slide 28: Emacs
	Slide 29: Vim
	Slide 30: Administrivia
	Slide 31: Lecture/Lab Format
	Slide 32: Policies
	Slide 33: Programming Assignments
	Slide 34: How to succeed
	Slide 35: Strategies
	Slide 36: Strategies: Building programming skills
	Slide 37: Lab this week

