
Welcome!
CS 223: Systems Programming

Instructor: Aline Normoyle 

 TA: Rebecca Lassman

 Textbook: Dive into Systems

 Slack: Announcements, links, etc

 Website: Policies, syllabus, etc

 Github: Code repository

 Lab: Park 231



Course Resources
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Webpage 

https://brynmawr-cs223-s26.github.io/website/

Github 

https://github.com/BrynMawr-CS223-S26/

Slack

https://BrynMawr-CS223-S26.slack.com



Agenda

What is a computer system?

Development environment overview

C and Java

Makefiles

Unix review: bash and working with paths

Editors

Administrivia
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Computer 
System

What is a computer system?

Hardware & Special Systems Software (OS)

Work together to run application programs

– HW executes program instructions

– OS implements interface to user/program 
and manages the computer HW

Operating System (OS)

Computer Hardware

CPU RAM Disk

Program
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What is systems programming?

• Programs that interact with hardware
– drivers, hardware management, embedded systems

• Programming of tools intended for use by other 
programmers or software
– Compilers, operating systems, game engines, inter-process 

communication

• Typically performance or memory critical
– Small optimizations have large payoff 
– Software runs in resource constrained environment
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What you will learn

• C programming fundamentals
• Memory management
• Debugging Tools
• Data representations under-the-hood
• Neuman architecture, Assembly
• Core operating systems concepts
• Concurrent Programming

– Processes
– Threads

• Performance do’s and dont’s
• Working with UNIX, git, and terminal editors
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Understanding binary representations 
and machine code

We will learn

• How to directly access and modify memory

• How data is stored in memory

• What low-level machine instructions look like 
and how to read it (x86_64 assembly 
language)
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How hardware affects performance
The overhead associated with running programs
  Q: why does my program run slowly?

  A1: picked a bad algorithm (big O analysis)

  A2: picked best algorithm, but program 
                  using system resources in inefficient way

Example: How a program uses memory can have huge effect 
   on its performance

 (ex) merge sort is O(nlogn) but it is not in-place:
             each merge pass requires moving elements from
             one list to another  (requires 2n memory space)

      (ex) program’s access patterns and the Memory Hierarchy
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Why study systems?
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To understand the systems that form the basis of all 
modern computing

To become better software engineers and programmers
- write more efficient code
- understand the limitations of computing in terms 
of security, performance, energy, etc 

Skills to design, build, and customize your own software 
and devices



Let’s Get Started!
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Development Environment

A development environment consists of the platform and tools that 
you use to write software

Systems programmers need to be able to 
– work from terminal using shell commands
– program in low-level languages
– use debugging and profiling tools

This class:
– Operating system: Ubuntu (Linux)
– Programming languages: C, x86_64 assembly language
– Editor: nano, vim, or emacs
– Makefiles for compiling and linking
– git for source control
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C

• High-level programming language
– Java, python, ruby, Javascript, C++, etc

– Imperative (sequence of statements)

– Procedural (structured using functions)

– No classes, built-in types such as strings, lists

• Less abstracted than other languages
– easier to see relationship between code and the 

computer’s running of it

– capable of more efficient code 

12



From Java to C: Hello World

class Hello {
  public static void main(String[] args) {
    System.out.println(“Hello World”);
  }
}

#include <stdio.h>

int main(int argc, char** argv) {
printf("Hello World!\n“);

  return 0;
}

To compile: javac hello.java
To run: java Hello

To compile: gcc hello.c
To run: ./a.out



1. Compiling a C program translates it to binary (0’s and 1’s )

• The binary file is an executable, meaning “we can run it”

  

Building and Running a C program

// example C program

int main() {

   int x = 6 + 7;

   printf(“x %d”, x);

   return 0;

}

01010110101
01010101010
10101010101
01010100

C   program: binary executable program:

gcc 
compiler
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Operating System (OS)

Computer Hardware 
(HW)

2. With OS’s help, HW circuits   
     runs binary executable
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1. Compiling (javac) a Java program translate it to Java byte code
2. Running (java) translates the program to binary (0’s and 1’s ) 

• The program that translate from byte code to machine code is called the 
Java Virtual Machine (JVM)

Building and Running a Java program

// example Java program

class Hello {
  public static void main(String[] args) {
    int x = 6 + 7;
    System.out.println(“Hello World”);
  }
}

01010110101
01010101010

binary 
executable
commands

javac
compiler
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Operating System (OS)

Computer Hardware 
(HW)

3. With OS’s help, HW circuits   
     runs binary executable
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ifne 25
goto 38
iinc 2, 1
…

java virtual machine

Java byte code
*.class



All programs must eventually 
become binary (0’s and 1’s) to run 
on a computer

• The binary code is specific to the hardware

• Higher-level languages (e.g. Java) have more layers of 
abstraction between the programmer’s code and the 
binary code

– higher-level languages are cross-platform, e.g. the same 
program can run on different hardware

• ex. Our C and Java programs run on mac, windows, and linux
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Makefiles

Idea: Put all build commands into a file
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$ nano Makefile
$ make hello

CC=gcc                                                                           
% :: %.c                                                                         
  $(CC) -g -Wall -Wvla -Werror -Wno-unused-variable $< -o $@                     
                                                                                 
all: hello                                                              
                                                                                 
clean :                                                                          
  rm hello



Review: UNIX basics

Ubuntu Desktop has a window manager (lab machines) but we will 
mostly be using command-line interfaces (CLI)

terminal – text-based interface for the OS

command line – current line in the terminal; where we issue a 
command

command prompt – prefix text at the beginning of the command line

shell – program that executes commands from terminal
– bash – the shell we will use in this class!
– zsh – mac shell
– powershell – windows shell
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Exercise: Connect to a server

On a laptop or home desktop computer, open a 
terminal and ssh to comet
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$ ssh <username>@comet.cs.brynmawr.edu



Exercise: Edit a file

Write and compile a program, `hello.c`, that 
prints “Hello World” 
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$ nano hello.c

$ gcc hello.c
$ ./a.out

$ gcc hello.c –o hello
$ ./hello



Reference: Some useful commands

• ls – list all directories

• cd, mkdir, mv, cp, rm – change directory, make directory, move, copy, remove

• cat, less, more – showing files

• javac, gcc, make – compiling programs

• vi, nano, emacs – editing files

• grep, find – searching files

• man – read documentation (RTFM: “Read the fine manual”) 

• ssh <username>@goldengate.cs.brynmawr.edu – log into CS server

• git – source control
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Working with paths from terminal

• What are files? What are directories?

• path - full name of a file or directory that indicates the file/directory location 

within the file system

– Absolute paths: path from the root of the file system to the file

– Relative paths: path from current working directory to the file

• File extension: Tells the OS what type of data is in the file (ex: *.txt, 
*.jpg, etc)
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Special directories

.. ← the parent directory (two dots)

. ← the current directory (one dot)

/ ← the root directory

/home/<username> ← your home directory

~ ← your home directory



Exercise

What  is the absolute path of hello.txt?

What  is the absolute path of hello.txt from the A 
directory?

What is the relative path of `hello.txt` from 
- the root directory?
- the A directory?
- the B directory?

root
-- A
---- hello.txt
-- B



Exercise: Draw the directory hierarchy 
after the following commands
$ pwd
/home/alinen
$ mkdir A
$ cd A
$ mkdir Z
$ touch talk.c
$ cd ..
$ touch listen.c
$ cd
$ touch sing.c



Your editor and you!

You must learn a terminal editor this semester

● Nano 
● Emacs
● Vim 

Learning a good editor will help you write code faster
 
You will need to use one of these editors for coding 
activities in lab



Nano
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Emacs
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NOTE: F10 to use the menu



Vim

● To open: `vi <filename>`

● To quit: Press escape, then `:q!`

● To save: Press escape, then `:w`

● Two modes: insert and command mode

○ insert mode: type text in the usual way: ‘i’ enters insert 
mode at current cursor position

○ Escape enters command mode: search, navigate, 
copy/paste/delete, etc
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ADMINISTRIVIA
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Lecture/Lab Format

• Lectures
– Slides with integrated activities

– Will share recordings after class

– Quizzes (30 minutes, closed book, 1 cheat sheet)

• Labs
– Coding Practice 

– Worksheets (in teams) 

• Assignments
– Weekly (due on Fridays)
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Policies

• Accommodations

– Need at least 2 weeks prior notice for extensions 
on quizzes/exams

• Covid policy: mask friendly

• Late policy: up to 1 day late
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Programming Assignments

• Submissions MUST compile using make on our UNIX systems
– Test on our servers to check your work
– Do not change basecode!

• Full credit submissions must also

– Follow the class coding style: especially consistent indentation
• You may need to configure your editor to ensure this works correctly and we 

will help you with that!

– not have memory errors (leaks, corruption)
• Run using valgrind to test

• Assignment 01 has more information
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How to succeed
• Read the textbook!

• Do the work each week
– Approx 10 hour week commitment (4.5 hrs + 5 hrs)

• Attend lectures and labs
– Lecture attendance is not mandatory
– But better grades are correlated with attendance
– Take hand-written notes

• Asking questions
– Labs/Lectures/Office Hours are the best time
– Reach out to me and TAs on Slack
– Slack is great for questions. Responses within 24 hrs, Mon-Fri
– Asking questions is a good way to network
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Strategies

• Building focus
– Work in silence on a specific task for a short period

• Pomodoro Method

– Turn off phone notifications, ring tones
– Close browsers, mail, etc

• Building understanding
– Alternate short focused periods of study with rest

• Building problem solving skills
– Use assignments and quizzes as practice
– Fix and understand errors
– Start early
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Strategies: Building programming skills

You’re effectively using assignments to learn if you can:

• Explain how your code works to someone else, without looking at your code
• Explain the system calls necessary to complete your assignment without 

looking them up online
• Write a similar program within a few minutes, without looking up help online

What worked for me:

• Writing my own programs from scratch
• Checking my work by stepping line by line using a debugger (gdb)
• When stuck, debugging the program with the help of a more experienced 

developer
• Comparing my solutions with others after I finished my own solution
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Lab this week

Checking your UNIX account

Signing into slack

Setting up SSH and Github

Pulling and pushing to your code repository for 
this course
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